Funded Grad Student Opportunities

2021
2021 Faculty Advisor Request form for Graduate Student Position

Location: Wake Forest School of Medicine

<table>
<thead>
<tr>
<th>Project Title:</th>
<th>3D Bioprinting and Regenerative Medicine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position Need:</td>
<td>PhD/MS student(s), start anytime</td>
</tr>
<tr>
<td>Funding:</td>
<td></td>
</tr>
</tbody>
</table>

Advisor: Your Name
Anthony Atala, MD
Professor and Director, Wake Forest Institute for Regenerative Medicine
Wake Forest University
Medical Center Blvd.
Winston-Salem, NC 27157
Phone: (336) 716-5701
Email: aatala@wakehealth.edu
www.wfirm.org

Specific Project Description:
3D bioprinting is being used in our laboratory to print cells, tissues, and organs. Various components are essential in allowing these technologies to move forward, including biomaterial specificity, bio-ink design and manufacturing, cell biology, hardware design and construction, and software development. The goal of this research is to manufacture tissue constructs that can be implanted in patients. We are working on many tissues with the bioprinting technology, including liver, heart, kidney, trachea, lung, muscle, cartilage, blood vessels and bone. This research involves using cells to engineer an implant, with the engineered bio-ink/biomaterials degrading as new tissue builds over time.

We are currently building on our prior research where human tissues and organs have been engineered and implanted in patients, in an effort to expand the number of tissues available, and to scale up the technology through 3D printing. The various aspects of this project include:

- To develop novel bio-inks and bio-materials
- To develop novel hardware and software for bioprinting
- To standardize cell culture and expansion conditions
- To define the optimal bioprinting parameters
- To bioprint tissues for in-vivo implantation

Other Notes:
Specific Project Description:

The Body on a Chip project is a federally funded effort to build a miniaturized system of human organs to model the body’s responses to harmful agents and to develop potential therapies.

Biomaterial-derived bio-inks are being designed and formulated as an extracellular matrix, and are combined with tissue specific human cells to 3D bio-print the organ structures. Miniature lab-engineered organ-like hearts, lungs, livers and blood vessels are placed on microchips and linked together via a system of circulating artificial blood substitutes through channels and sensors to provide online monitoring of individual organs and the overall organ system.

The goal of the research is to accelerate the development of therapeutic agents by having a technology that better represents the human biological system, as compared to current methods of 2D culture systems or in vivo animal testing that may not accurately replicate the human response. The system can also be used to develop diseased tissue and organ models that can be used to study specific pathology, and can be explored for the advancement of personalized medicine therapeutics.
2021 Faculty Advisor Request form for Graduate Student Position

<table>
<thead>
<tr>
<th>Location:</th>
<th>Wake Forest School of Medicine</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Project Title:</th>
<th>Regenerative Medicine for the Wounded Warrior</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position Need:</td>
<td>PhD/MS student(s), start anytime</td>
</tr>
<tr>
<td>Advisor:</td>
<td>Anthony Atala, MD</td>
</tr>
<tr>
<td></td>
<td>Professor and Director, Wake Forest Institute for Regenerative Medicine</td>
</tr>
<tr>
<td></td>
<td>Wake Forest University</td>
</tr>
<tr>
<td></td>
<td>Medical Center Blvd.</td>
</tr>
<tr>
<td></td>
<td>Winston-Salem, NC 27157</td>
</tr>
<tr>
<td></td>
<td>Phone: (336) 716-5701</td>
</tr>
<tr>
<td></td>
<td>Email: aatala@wakehealth.edu</td>
</tr>
<tr>
<td></td>
<td>www.wfirm.org</td>
</tr>
</tbody>
</table>

Specific Project Description:
The Wake Forest Institute for Regenerative Medicine (WFIRM) has over a dozen projects in the development pipeline for our wounded warriors. Under a $75 Million federally funded program, the Armed Forces Institute of Regenerative Medicine, directed by Dr. Atala, aims to translate regenerative medicine technologies to our wounded warriors. Many technologies are under development affecting 5 major focus areas: Craniofacial, Extremities, Composite Tissue Allo-transplantation, Skin, and Genitourinary. These technologies include the development of biomaterials, cells, or both together, to achieve therapeutic targets in patients. A multi-disciplinary approach involving biomaterial sciences, nanotechnology, molecular and cell biology, physiology and pharmacology, is needed to create therapy constructs that could be developed or tissue engineered. This program has projects that cover the entire spectrum of technology development, including idea conception, experimental design, basic and applied sciences, in-vitro and in-vivo testing, proof-of-principle research, pre-clinical studies, process development, FDA regulatory filings, GMP manufacturing, quality assurance, and clinical trial design and execution.

Other Notes:
There is an opportunity to be involved in various areas, involving different tissue and organ targets, with a wide range of research projects.
Location: Wake Forest University

Project Title: Wake Forest Innovations - Medical Device Design Fellowship
Position Need: 1 MS/PhD (PhD preferred), start May or August 2021
Funding: Funded via a GRA, contract in place

Advisor: Philip Brown, PhD
Assistant Professor, Biomedical Engineering, WFU Campus
VT-WFU Center for Injury Biomechanics
School of Biomedical Engineering and Sciences
575 N. Patterson Ave, Suite 120
Winston-Salem, NC 27101
phibrown@wakehealth.edu
www.CIB.vt.edu

Specific Project Description: Wake Forest Biomedical Engineering and Wake Forest Innovations Center for Technology Innovation and Commercialization Medical Device Unit work together to bring clinical inventions from idea to proof of concept to commercial product. There are several on-going projects with clinical inventors within orthopedics, neurosurgery, radiology, plastic surgery, interventional radiology, trauma, and many others. Past projects have included stents, surgical tools, orthopedic implants, trauma devices, safety hardware, imaging software, and wearable sensors. Students selected for this project will be heavily engaged in the design process, conceptualization, prototyping, evaluation, and management of multiple concurrent device development timelines.

Other Notes: This research effort will be in the Center for Injury Biomechanics (CIB) and you will have the opportunity to work on a range of projects in the field of automobile safety, military restraints, and sports biomechanics. The CIB has two primary research facilities. The first is in the WFU School of Medicine in Winston-Salem, NC and the second is at Virginia Tech. The research at the CIB combines experimental testing, computational modeling, and case analysis to investigate human injury biomechanics.
Location: Wake Forest University

Project Title: Comparative Surgical Biomechanics

Position Need: 1 MS/PhD (PhD preferred), start May or August 2021

Funding: Funded via a GRA, contract in place

Advisor: Philip Brown, PhD
Assistant Professor, Biomedical Engineering, WFU Campus
VT-WFU Center for Injury Biomechanics
School of Biomedical Engineering and Sciences
575 N. Patterson Ave, Suite 120
Winston-Salem, NC 27101
phibrown@wakehealth.edu
www.CIB.vt.edu

Specific Project Description: There are several opportunities within Biomedical Engineering and through collaborations with orthopedics, neurosurgery, plastic surgery, and others for the experimental validation and exploration of surgical techniques. These procedures are intended to preserve and/or restore physiological function. Our lab conducts surgical biomechanical experiments on new and standard surgical techniques of repairs to bones, ligaments, tendons, and joints. Students selected for this research area will be heavily engaged in experimental design, fixture design, tissue handling and dissection, instrumentation, material testing, data analysis, as well as maintaining professional partnerships with clinical faculty.

Other Notes: This research effort will be in the Center for Injury Biomechanics (CIB) and you will have the opportunity to work on a range of projects in the field of automobile safety, military restraints, and sports biomechanics. The CIB has two primary research facilities. The first is in the WFU School of Medicine in Winston-Salem, NC and the second is at Virginia Tech. The research at the CIB combines experimental testing, computational modeling, and case analysis to investigate human injury biomechanics.
2021 Faculty Advisor Request form for Graduate Student Position

<table>
<thead>
<tr>
<th>Location:</th>
<th>Wake Forest University</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Title:</td>
<td>Surgical Robotics Biomechanics</td>
</tr>
<tr>
<td>Position Need:</td>
<td>1 MS/PhD (PhD preferred), start May or August 2021</td>
</tr>
<tr>
<td>Funding:</td>
<td>Funded via a GRA, contract in place</td>
</tr>
</tbody>
</table>

Advisor:

Philip Brown, PhD
Assistant Professor, Biomedical Engineering, WFU Campus
VT-WFU Center for Injury Biomechanics
School of Biomedical Engineering and Sciences
575 N. Patterson Ave, Suite 120
Winston-Salem, NC 27101
phibrown@wakehealth.edu
www.CIB.vt.edu

Specific Project Description:

Biomedical Engineering is fostering opportunities for collaborative research and technology development with physicians and industry partners. We have interest to investigate the following areas of surgical robotics: surgeon to robot interface, force feedback control, autonomous operations, robot tool and tissue interaction, laparoscopic tissue mechanics, surgical instrument design, visualization aids, augmented reality interfaces, training tissue surrogate development, analysis of training and surgical operation, artificial intelligence surgical aids, patient safety, operating room safety & efficiency.

Other Notes:

This research effort will be in the Center for Injury Biomechanics (CIB) and you will have the opportunity to work on a range of projects in the field of automobile safety, military restraints, and sports biomechanics. The CIB has two primary research facilities. The first is in the WFU School of Medicine in Winston-Salem, NC and the second is at Virginia Tech. The research at the CIB combines experimental testing, computational modeling, and case analysis to investigate human injury biomechanics.
2021 Faculty Advisor Request form for Graduate Student Position

Location:
Virginia Tech (Fralin Biomedical Research Inst, Roanoke, VA)

<table>
<thead>
<tr>
<th>Project Title:</th>
<th>Computational and Experimental Models of Pericyte-Endothelial Cell Interactions during Blood Vessel Formation and Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position Need:</td>
<td>1 MS/PhD (PhD preferred), start May or August 2021</td>
</tr>
<tr>
<td>Funding:</td>
<td>NSF CAREER Award, NIH R01, Amer. Heart Assoc. Transform. Proj. Award</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Advisor:</th>
<th>John C. Chappell, PhD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Associate Professor, Fralin Biomedical Research Institute Center for Heart and Reparative Medicine, FBRI</td>
</tr>
<tr>
<td></td>
<td>Department of Biomedical Science Education, VTC SoM</td>
</tr>
<tr>
<td></td>
<td>Department of Biomedical Engineering and Mechanics, Va. Tech</td>
</tr>
<tr>
<td></td>
<td>Va. Tech-Wake Forest Univ. School of Biomedical Engr & Sciences</td>
</tr>
<tr>
<td></td>
<td>2 Riverside Circle (MC 0801), VTCRI, Roanoke, VA 24016</td>
</tr>
<tr>
<td>Phone:</td>
<td>540-526-2219</td>
</tr>
<tr>
<td>E-mail:</td>
<td>JChappell@vtc.vt.edu</td>
</tr>
<tr>
<td>URL:</td>
<td>https://fbri.vtc.vt.edu/research/labs/chappell.html</td>
</tr>
</tbody>
</table>

Overall Lab Description:
Blood vessels deliver oxygen and distribute inflammatory cells to nearly every tissue in the human body, among other essential functions. Regulation of vascular growth must therefore be tightly controlled, and when this regulation is disrupted, numerous diseases can occur or become worsened such as cancer and diabetic retinopathy. Dr. John Chappell and his research team study how the blood vasculature develops during early organ formation and during certain diseases such as diabetic retinopathy and neurological disorders. Increased insight into the basic mechanisms of vessel formation will guide the design of clinical therapies for vascular-related pathologies.

Pericytes are cells that wrap around blood vessels to maintain their stability and integrity. Disruptions in pericyte contribution to the vascular wall can lead to disease progression including diabetic retinopathy. Trained as a biomedical engineer, Dr. Chappell uses computational modeling approaches in conjunction with real-time imaging of ex vivo and in vitro models of blood vessel formation to understand pericyte behavior during blood vessel formation in health and disease. Understanding the mechanisms behind pericyte recruitment and investment will provide rationale and guidance for targeting pericyte-endothelial cell interactions for therapeutic benefit.

Specific Project Notes:
1. Construct an **agent-based computational model** of pericyte interactions with endothelial cells during early vascular development, and develop experimental models to inform and validate this model
2. Establish a **mass transfer model** (e.g. Krogh cylinder-based) to simulate loss or dysfunction of vascular pericytes within a capillary bed, and develop a corresponding experimental model to construct and validate computational model
3. Develop **tissue engineered models** that involve fluid flow through microvessel-like structures incorporating vascular endothelial cells and pericytes
2021 Faculty Advisor Request form for Graduate Student Position

Location: Virginia Tech

<table>
<thead>
<tr>
<th>Project Title:</th>
<th>Irreversible Electroporation for treating Brain Cancer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position Need:</td>
<td>2 PhDs, start ASAP</td>
</tr>
<tr>
<td>Funding:</td>
<td>Funded via a GRA, contract in place (NIH RO1, NIH PO1)</td>
</tr>
</tbody>
</table>

Advisor:

Rafael V. Davalos, PhD
L. Preston Wade Professor and ASME Fellow
Virginia Tech - Wake Forest University
School of Biomedical Engineering and Sciences
329 ICTAS Building, Stanger Street MC 0298
Blacksburg, VA 24061
Phone: (540) 231-1979
Email: davalos@vt.edu
http://www.sbes.vt.edu/davalos/

Specific Project Description:

Irreversible Electroporation (IRE) is a method we invented for non-thermal tissue ablation, with applications ranging from cancer treatment, treating arrhythmic regions of the heart, to tissue engineering. Short, but intense, electric pulses are delivered through small surgical probes placed into the targeted region that induce nanopores in the lipid bilayer, which leads to cell death. By tuning the pulse parameters to mitigate thermal effects, IRE affects only the lipid bilayer and preserves critical structures, making otherwise inoperable tumors treatable. Our technology has helped thousands of patients. It was given the Expedited Pathway Designation in 2018 for its ability to more than double the median survival of patients with pancreatic cancer. Recently, we invented a means to deliver high-frequency pulses for treating brain tumors. We have shown through microfluidic tumor constructs that these waveforms preferentially target malignant cells based on their biophysical morphology. Furthermore, we have found that this mode of therapy is ideally synergistic with adjuvant immunotherapy. We will deepen our understanding of the underlying biophysics using our microfluidic devices while helping canine patients using custom-designed surgical devices. In addition, this research will be instrumental in translating the technology for human clinical trials in '22.

Other Notes:

All candidates must have strong oral and written communication skills and be interested in collaborating with immunologists and clinicians. The research effort will be held in the Bioelectromechanical Systems Lab in Kelly Hall. Students will be expected to develop skills in biophysics and engineering such as design, prototyping, and numerical modeling.
2021 Faculty Advisor Request form for Graduate Student Position

<table>
<thead>
<tr>
<th>Location:</th>
<th>Virginia Tech</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Title:</td>
<td>Mechanical Characterization of Soft Biological Systems</td>
</tr>
<tr>
<td>Position Need:</td>
<td>1 PhD, start ASAP</td>
</tr>
<tr>
<td>Funding:</td>
<td>Funded via a GRA</td>
</tr>
</tbody>
</table>

Advisor:

Raffaella De Vita, PhD
Professor and Associate Department Head
STRETCH Lab, Virginia Tech
Department of Biomedical Engineering and Mechanics
School of Biomedical Engineering and Sciences
335 Kelly Hall, Stanger Street MC 0298
Blacksburg, VA 24061
Phone: (540) 231-5904
Email: devita@vt.edu
Lab Website: www.vtstretchlab.com

Specific Project Description:

Research in the STRETCH (Soft Tissue Research: Experiments, Theory, and Computations by Hokies) lab focuses on characterizing the mechanical properties of biological systems ranging from cellular components to tissues. In our lab, we place special emphasis on the development of new experimental methods and mathematical models that capture the mechanical behavior of these systems.

Currently, we are working on quantifying the mechanical properties of the female pelvic organs and their major supportive structures (e.g., uterosacral ligaments and cardinal ligaments) by performing uniaxial, planar biaxial, and inflation tests. The collected mechanical data are then used to formulate constitutive equations for computer simulations. These organs and supportive structures are damaged during pregnancy leading to pelvic floor disorders (e.g., urinary incontinence, fecal incontinence, and prolapse) that affect one out of three women in the United States.

Other Notes:

The STRETCH lab is located in 310A Kelly Hall. The lab has state-of-the-art facilities and equipment that are used to characterize the mechanics of a variety of cells and tissues. Although the research interests in the lab are diverse and continuously evolve over time, the common thread that runs through much of the work in the STRETCH lab is the desire to advance fundamental and mechanistic knowledge of biological systems. This knowledge is crucial for the development of effective interventions to prevent and treat illness and disability.
2021 Faculty Advisor Request form for Graduate Student Position

Location: Virginia Tech

<table>
<thead>
<tr>
<th>Project Title:</th>
<th>Safety Through Disruption, National University Transportation Center</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position Need:</td>
<td>Up to two students, starting summer or fall 2021</td>
</tr>
<tr>
<td>Funding:</td>
<td>Funded via a GRA with opportunities for summer employment</td>
</tr>
</tbody>
</table>

Advisor: Zac Doerzaph, PhD
Director, Center for Advanced Automotive Research and Safe-D Center
Virginia Tech Transportation Institute
Associated Professor, Dept. of Biomedical Engineering and Mechanics
Blacksburg, VA 24061
Phone: (540) 231-1046
Email: zdoerzaph@vtti.vt.edu

Specific Project Description: Disruptive technologies are changing transportation. The Safe-D Center maximizes the safety benefits of these disruptive technologies through targeted research that addresses the most pressing transportation safety questions. Safe-D provides an opportunity for students work alongside career transportation technology experts at the Virginia Tech Transportation Institute while obtaining their degree in the department of Biomedical Engineering and Mechanics.

Selected GRAs will be involved in cutting-edge research focused on the development and evaluation of advanced vehicle and infrastructure applications relating to the safety of Automated Vehicles, Connected, Vehicles Transportation as a Service and Big Data Analytics. GRAs should anticipate a hands-on experience leveraging a combination of epidemiology, systems design, data mining, modeling, test track experiments, and field experiments using functional vehicles and system prototypes (see website links above). A strong skillset within engineering, data analysis, modeling, human capabilities, and writing is desired; however, the most important attribute of the GRA is a keen interest in developing and evaluating technological solutions to mitigating the traffic fatality epidemic.

Other Notes: As the Grant’s Director, Dr. Doerzaph is seeking GRAs to work alongside the Nation’s top transportation safety faculty and students in focused teams following Agile management processes when feasible. Focus will involve human safety within the advanced vehicle and infrastructure systems, possibly including injury mechanisms; however, the work will be focused on prevention (i.e. avoiding collisions) rather than on crash worthiness (i.e. surviving collisions).
2021 Faculty Advisor Request form for Graduate Student Position

<table>
<thead>
<tr>
<th>Location:</th>
<th>Virginia Tech</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Title:</td>
<td>Crash and Injury Risk in Vehicles with Active Safety Systems</td>
</tr>
<tr>
<td>Position Need:</td>
<td>2 MS/PhDs (PhD Preferred), start May or August 2021</td>
</tr>
<tr>
<td>Funding:</td>
<td>Funded via a GRA, contract in place</td>
</tr>
</tbody>
</table>

Advisor: H. Clay Gabler, PhD
Samuel Herrick Professor of Engineering
Virginia Tech
Department of Biomedical Engineering and Mechanics
445 Kelly Hall, 325 Stanger Street (MC 0194)
Blacksburg, VA 24061
Phone: (540) 231-7190
Email: gabler@vt.edu
www.sbes.vt.edu/gabler

Specific Project Description:

Up to 90% of car crashes are caused by driver error. US auto companies are introducing a radically new generation of cars onto US highways with advanced crash avoidance sensors/actuators – frequently referred to as Active Safety Systems. These systems can automatically brake and steer a car to avoid an impending crash. These are the first steps toward full automated, driverless cars. Current systems use forward looking cameras, millimeter-wavelength radar, and LIDAR to alert the driver of a crash and in some cases take over control of the car. Automated collision avoidance features on new production cars include automated radar braking, forward collision warning, lane departure prevention, blind spot detection, and adaptive cruise control.

Active safety systems promise potential reduction in crash injuries, however, as evidenced by recent crashes of Tesla vehicles, these technologies may carry their own unique risks. In this project, we will couple laboratory vehicle test data with computational modeling to determine the crash risk and potential benefit of (1) the newest automated crash avoidance technologies, currently available only on luxury cars, (2) emerging technologies such as vehicle-to-vehicle communication, and (3) fully automated driverless cars.

Other Notes: The research will be conducted in the Center for Injury Biomechanics (CIB).
2021 Faculty Advisor Request form for Graduate Student Position

<table>
<thead>
<tr>
<th>Location:</th>
<th>Virginia Tech</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Title:</td>
<td>Advanced Countermeasures for Reducing Pedestrian and Bicyclist Injuries</td>
</tr>
<tr>
<td>Position Need:</td>
<td>1 MS/PhD (PhD Preferred), start May or August 2021</td>
</tr>
<tr>
<td>Funding:</td>
<td>Funded via a GRA, contract in place</td>
</tr>
</tbody>
</table>

Advisor: Clay Gabler, PhD

Samuel Herrick Professor of Engineering
Virginia Tech
Department of Biomedical Engineering and Mechanics
445 Kelly Hall, 325 Stanger Street (MC 0194)
Blacksburg, VA 24061
Phone: (540) 231-7190
Email: gabler@vt.edu
www.sbes.vt.edu/gabler

Specific Project Description:

Each year in the U.S., over 5000 pedestrians are killed in traffic crashes. An additional 1000 bicyclists are killed annually. Many of these vulnerable road users are children. One benefit of emerging highly automated vehicles is that this technology may benefit not only drivers, but also may eliminate many pedestrian crashes and deaths. The challenge however will be for vehicles to rapidly detect and respond to the many ways in which vehicle-pedestrian and vehicle-bicycle collisions occur. Both pedestrians and bicyclists are difficult to detect with current sensor systems. A number of countermeasures have been proposed whereby a highly automated vehicle could respond to an impending crash: automated emergency braking, pedestrian airbags, and a soft, pedestrian-compliant, front structure design. However, these technologies may have little time to deploy in the few milliseconds between detection and impact.

In this project, we will combine laboratory vehicle test data and computational modeling with real world case studies to estimate the pedestrian / bicyclist crash risk and potential benefit of vehicles equipped with highly automated sensor and countermeasure systems. You will be part of a highly interdisciplinary team that will reconstruct real world crashes, assess impact injury criteria for pedestrians and bicyclists, and model the integration of automated sensor systems and impact injury countermeasures.

Other Notes: The research will be conducted in the Center for Injury Biomechanics (CIB).
2021 Faculty Advisor Request form for Graduate Student Position

Location: Wake Forest School of Medicine

<table>
<thead>
<tr>
<th>Project Title:</th>
<th>Exploring physics-based finite element analysis for BABT injury criteria development using human surrogates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position Need:</td>
<td></td>
</tr>
<tr>
<td>Funding:</td>
<td></td>
</tr>
</tbody>
</table>

Advisor:

Scott Gayzik, PhD
Associate Professor, Biomedical Engineering
VT-WFU Center for Injury Biomechanics
School of Biomedical Engineering and Sciences
575 N. Patterson Ave, Suite 120
Winston-Salem, NC 27101
sgayzik@wakehealth.edu
www.CIB.vt.edu

Specific Project Description:
The objective of this research is to develop and validate a physics-based finite element animal model(s) (ovine and caprine species) to study behind armor blunt trauma (BABT). These models will be an important tool for evaluating countermeasures and developing computational injury criteria to better protect service members. The models will be used to provide insight and guidance on the risk of skeletal and soft tissue injuries including the development of injury criteria for rib, pulmonary and limited vascular and peripheral organ injury from BABT. The proposed project is the first of its kind to develop ovine and caprine FEA models for use in the study of BABT. Specifically the models will be used to develop finite element based BABT injury criteria.

Other Notes:
This research effort will be in the Center for Injury Biomechanics (CIB) and you will have the opportunity to work on a range of projects in the field of automobile safety, military restraints, and sports biomechanics. The CIB has two primary research facilities. The first is in the WFU School of Medicine in Winston-Salem, NC and the second is at Virginia Tech. The research at the CIB combines experimental testing, computational modeling, and case analysis to investigate human injury biomechanics.
2021 Faculty Advisor Request form for Graduate Student Position

Location:
Wake Forest University

Project Title:
Development and Validation of a Brain Phantom for Therapeutic Cooling Devices

Position Need:
1 MS/PhD (PhD preferred), start August 2021

Funding:
Internal – WFU Innovations

Advisor:
Scott Gayzik, PhD
Associate Professor, Biomedical Engineering
VT-WFU Center for Injury Biomechanics
School of Biomedical Engineering and Sciences
575 N. Patterson Ave, Suite 120
Winston-Salem, NC 27101
sgayzik@wakehealth.edu
www.CIB.vt.edu

Specific Project Description:
An emerging area of interest is the study of bio-heat transfer. In the CIB, we are interested in developing phantoms and models for treating pathology such as epilepsy and potentially TBI. This project will focus on designing biofidelic phantoms for use in thermal therapy design. The student will conduct experiments on a previously-developed brain phantom which simulates cooling therapy and develop it further using 3D printing technology. A modeling component is included as well, using an established finite difference model to optimize performance and calculate the predicted transient temperature response of both the phantom and the body.

Other Notes:
This research effort will be in the Center for Injury Biomechanics (CIB) and you will have the opportunity to work on a range of projects in the field of automobile safety, military restraints, and sports biomechanics. The CIB has two primary research facilities. The first is in the WFU School of Medicine in Winston-Salem, NC and the second is at Virginia Tech. The research at the CIB combines experimental testing, computational modeling, and case analysis to investigate human injury biomechanics.
2021 Faculty Advisor Request form for Graduate Student Position

Location: Wake Forest University

Project Title: Human Body Model Development for Trauma Research

Position Need: 1 MS/PhD (PhD preferred), start May or August 2021

Funding: Funded via a GRA, contract in place

Advisor:
Scott Gayzik, PhD
Associate Professor, Biomedical Engineering
VT-WFU Center for Injury Biomechanics
School of Biomedical Engineering and Sciences
575 N. Patterson Ave, Suite 120
Winston-Salem, NC 27101
sgayzik@wakehealth.edu
www.CIB.vt.edu

Specific Project Description:
Computational modeling is a growing component of injury biomechanics and trauma research. This project is a multi-center effort developing a next generation set of human body finite element models for enhanced injury prediction and prevention systems. The student will be responsible for assisting in model development tasks including scaling, postural adjustment, meshing, and contact algorithm development. Responsibilities will also include reporting FEA model analysis and results, running analyses on distributed computing environments, simulating validation procedures, performing literature reviews, and reporting related research efforts through written and oral status updates. The student(s) will gain valuable experience in fields of trauma research, computer modeling, and injury biomechanics.

Other Notes:
This research effort will be in the Center for Injury Biomechanics (CIB) and you will have the opportunity to work on a range of projects in the field of automobile safety, military restraints, and sports biomechanics. The CIB has two primary research facilities. The first is in the WFU School of Medicine in Winston-Salem, NC and the second is at Virginia Tech. The research at the CIB combines experimental testing, computational modeling, and case analysis to investigate human injury biomechanics.
Faculty Advisor Request Form for Graduate Student Position

Location: Wake Forest University

<table>
<thead>
<tr>
<th>Project Title:</th>
<th>Analysis of nucleic acid biomarkers using solid-state nanopores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position Need:</td>
<td>1 PhD, MS start August 2021</td>
</tr>
<tr>
<td>Funding:</td>
<td>funded through GRA, contract in place (NIH R33)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Advisor:</th>
<th>Adam Hall, PhD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assistant Professor, Biomedical Engineering, WFU Campus</td>
<td></td>
</tr>
<tr>
<td>VT-WFU School of Biomedical Engineering and Sciences</td>
<td></td>
</tr>
<tr>
<td>575 N. Patterson Ave, Suite 120</td>
<td></td>
</tr>
<tr>
<td>Winston-Salem, NC 27101</td>
<td></td>
</tr>
<tr>
<td>arhall@wakehealth.edu</td>
<td></td>
</tr>
<tr>
<td>www.thehalllab.org</td>
<td></td>
</tr>
</tbody>
</table>

Specific Project Description:

The wide-ranging roles of nucleic acids make them valuable as molecular biomarkers for diverse diseases, from infection to cancer. While these molecules can be probed with some conventional techniques, current technologies have limitations in cost, speed, sensitivity, specificity, and/or versatility that challenge their integration into clinical care. Consequently, there is a need for new technologies for molecular analysis.

In response, our laboratory is developing the emerging single molecule technology of solid-state nanopores: devices consisting of a single, nanometer-sized aperture fabricated in a synthetic membrane through which biomolecules can be threaded electrically and probed individually. In addition to conventional analysis with this platform, we have also demonstrated a novel assay that enables the selective detection and quantification of diverse features of nucleic acids, including sequence motifs and epigenetic modifications. The goal of this project will be to continue our development towards translation of SS-nanopores to clinically-relevant applications with a specific focus on cancer.

Other Notes:

This project is highly interdisciplinary, requiring the development of skills in biological and biochemical techniques, biophysics, device fabrication, chemistry, and programming. Past experience in one or more of these areas is preferred, but not required.
2021 Faculty Advisor Request Form for Graduate Student Position

Location: Wake Forest University

<table>
<thead>
<tr>
<th>Project Title:</th>
<th>Solid-state nanopore analysis of biological sugars</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position Need:</td>
<td>1 PhD, MS start August 2021</td>
</tr>
<tr>
<td>Funding:</td>
<td>funded through GRA, contract in place (NIH R01)</td>
</tr>
</tbody>
</table>

Advisor:

Adam Hall, PhD
Assistant Professor, Biomedical Engineering, WFU Campus
VT-WFU School of Biomedical Engineering and Sciences
575 N. Patterson Ave, Suite 120
Winston-Salem, NC 27101
arhall@wakehealth.edu
www.thehalllab.org

Specific Project Description:

Hyaluronan (or hyaluronic acid, HA) is a key glycosaminoglycan (i.e. a linear anionic sugar polymer) that has diverse roles, including tissue structure definition and hydration, intrinsic immunity, and joint lubrication. HA can be found in all physiological fluids and tissues, where changes in its composition can either result from or be a direct cause of disease emergence, making it a potentially important bioindicator. However, current tools for analyzing HA have limitations in sensitivity and/or ability to discriminate critical size differences. To address this gap, we have developed solid-state (SS-) nanopore technology – electrical detection of single-molecules as they are driven through a nanoscopic pore – to achieve direct quantification and molecular weight determination of ultra-small amounts of HA (Rivas et al. *Nature Communications, 2018*). Using tools built entirely in our lab, we have demonstrated that a full size distribution can be obtained rapidly and with single-molecule precision from as little as 10 nanograms of HA extracted from physiological samples. This project will apply our technology to examine the HA as a bioindicator of osteoarthritis and cancer.

Other Notes:

This project is highly interdisciplinary, requiring the development of skills in biological and biochemical techniques, biophysics, device fabrication, chemistry, and programming. Past experience in one or more of these areas is preferred, but not required.
2021 Faculty Advisor Request form for Graduate Student Position

Location: Wake Forest School of Medicine

Project Title: Evaluating Gene Therapy Strategies to Treat Epilepsy Using a Novel Optogenetic Measure of Network Excitability and Seizure Susceptibility

Position Need: MS, start May or August 2021

Funding: NIH

Advisor: David Klorig
Instructor, Neurobiology and Anatomy, WFUHS Campus
Wake Forest University Health Sciences
Medical Center Blvd
Winston-salem, NC 27157
dklorig@wakehealth.edu
www.kloriglab.com

Specific Project Description:
Gene therapy is an emerging treatment strategy that directly engages the machinery of the cell to correct dysfunction. Epilepsy is a debilitating disease and current pharmacological approaches do not work for all patients. Gene therapy has the potential to provide lasting relief with a single minimally-invasive treatment. A student working on this project will be helping to evaluate potassium channel-based gene therapy for epilepsy using a recently developed method to track network excitability and seizure susceptibility in freely behaving mice. This project will involve recording and analyzing large quantities of neural data, with the opportunity to work on closed-loop brain-machine interfaces. Computational / programming experience will be helpful.

Other Notes:
As a neurophysiologist, I use a variety of analytic techniques to study seizure susceptibility. My core technology involves activating specific populations of neurons optogenetically and measuring network-wide activity spread via a satellite recording array spread across known brain networks in mice. Additional tools include computational modeling and machine learning. My proximal goal is to understand why seizures occur, but my eventual goal is to map and characterize the various modes or states the brain can exist in (with an emphasis on sleep states) in order to uncover clues about how we learn and synthesize information in order to build our internal model of the world.
2020 Faculty Advisor Request form for Graduate Student Position

Location:
Wake Forest School of Medicine

<table>
<thead>
<tr>
<th>Project Title:</th>
<th>Cell Patterning for Hierarchical and Interfacial Tissue Development</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position Need:</td>
<td>MS/PhD student(s), PhD preferred, start anytime</td>
</tr>
<tr>
<td>Funding:</td>
<td>NIH/NIBIB, DOD</td>
</tr>
</tbody>
</table>

Advisor:
Your Name

Associate Professor, Wake Forest Institute for Regenerative Medicine (WFIRM)
Core Faculty, VT-WFU School of Biomedical Engineering and Sciences
391 Technology Way
Winston-Salem, NC 27101
Phone: (336) 713-7288
Email: sjlee@wakehealth.edu
www.wfirm.org

Specific Project Description:

One major challenge in advancing tissue engineering applications to the clinic is the inadequate production of tissue constructs with clinically relevant size and shape to replace injured or missing tissues. Such tissues can only achieve long-term function through proper vascularization at the micro- and macro-scale, and tissue interface integration, including compliance matching. For example, interfacial engineering is crucial in regions where different tissue-types meet, such as bone-cartilage, muscle-tendon, skeletal muscle integrated with the neural network, or the ubiquitous vascular endothelium across all tissues and organs. We have begun to address these challenges by demonstrating the fabrication of multiple tissue types printed using custom bioink formulations and individual cell populations. Our recent work has established a strong foundation for complex cellular printing and precise tissue patterning using (1) optimized basic bioink formulation composed of fibrinogen, hyaluronic acid (HA), gelatin, and glycerol, (2) tissue-specific decellularized ECM (dECM) bioinks with tunable biochemical and biomechanical properties, (3) derivatization of the bioinks via growth factor-mimetic peptide conjugation, (4) sacrificial bioinks, and (5) integrated tissue-organ printing (ITOP) capability.

Leveraging these successes, we will develop composite tissue printing platforms to fabricate multi-cellular tissues with functional interfaces that recapitulate the gradient design of matrix architecture and composition, and a vasculature that could support bioprinted tissues and organs.

Other Notes:

This project involves multidisciplinary areas; biomaterial science, cell biology, mechanical engineering, software development, and so on.
2021 Faculty Advisor Request form for Graduate Student Position

<table>
<thead>
<tr>
<th>Location:</th>
<th>Wake Forest School of Medicine</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Project Title:</th>
<th>Radiation-induced normal tissue injury and response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position Need:</td>
<td>PhD student</td>
</tr>
<tr>
<td>Funding:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Advisor:</th>
<th>Michael T. Munley, PhD, DABR, FAAPM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Professor and Section Head – Physics, Radiation Oncology</td>
</tr>
<tr>
<td></td>
<td>Professor, Biomedical Engineering</td>
</tr>
<tr>
<td></td>
<td>Wake Forest School of Medicine</td>
</tr>
<tr>
<td></td>
<td>Adjunct Professor, Physics</td>
</tr>
<tr>
<td></td>
<td>Wake Forest University</td>
</tr>
<tr>
<td></td>
<td>Medical Center Blvd.</td>
</tr>
<tr>
<td></td>
<td>Winston-Salem, NC 27157</td>
</tr>
<tr>
<td></td>
<td>mmunley@wakehealth.edu</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Specific Project Description:</th>
<th>Research opportunities exist that are focused upon radiation response modeling and advanced medical imaging techniques related to the treatment of patients with cancer. Current research efforts are concentrated on: i) developing models of normal tissue (lung and musculoskeletal) injury resulting from exposure to medical or space radiation and ii) determining the carcinogenic risk of medical procedures that utilize ionizing radiation. Other potential research areas are radiosurgery and radiation dosimetry.</th>
</tr>
</thead>
</table>

| Other Notes: | Introductory hands-on experience in clinical medical physics will also be obtained. |
2021 Faculty Advisor Request form for Graduate Student Position

<table>
<thead>
<tr>
<th>Location:</th>
<th>Wake Forest School of Medicine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Title:</td>
<td>Airway Organoids for Disease and Toxicity Modeling and Countermeasure Development</td>
</tr>
<tr>
<td>Position Need:</td>
<td>MS/PhD student(s) (PhD preferred), start Anytime</td>
</tr>
<tr>
<td>Funding:</td>
<td>NIH, DHHS</td>
</tr>
</tbody>
</table>
| **Advisor:** | **Sean Murphy**
Assistant Professor, Wake Forest Institute for Regenerative Medicine
Wake Forest University Medical Center Blvd.
Winston-Salem, NC 27157
semurphy@wakhealth.edu
https://school.wakehealth.edu/Faculty/M/Sean-Vincent-Murphy |

Specific Project Description:

Currently, in vitro and in vivo models are unable to fully replicate the structure and function of the human airway. While some progress has been made for disease modeling and drug discovery, current in vitro models are unable to reproduce the complex spatial morphology and allow biologically relevant cell-cell and cell-matrix interactions. There is a need for a new model to more fully represent the human airway.

We have developed a multicellular bronchial airway organoid model that more accurately mimics the biological environment of the human upper airway compared to 2D culture. It not only contains primary airway cells that express markers similar to native lung, but also native extracellular matrix components found within the human lung. The model is capable of being integrated into a microfluidic device for disease and toxicity modeling for the future development of appropriate countermeasures.

The goal of this research is to apply the multicellular biomimetic airway organoid as a more effective in vitro surrogate for airway disease modeling and therapy evaluation.

Other Notes:

- https://newsroom.wakehealth.edu/News-Releases/2019/10/HHS-Awards-Major-Funding-Award-to-WFIRM
2021 Faculty Advisor Request Form for Graduate Student Position

Location: Richard H. Dean Building
391 Technology Way
Winston-Salem, NC 27101

Project Title: Controlled delivery of therapeutic agents

Position Need: MS/PhD student(s) (MS preferred), start May or August 2021

Advisor: Emmanuel C. Opara, PhD
Professor, Institute for Regenerative Medicine
Professor, Biomedical Engineering
Phone: (336) 713-1297
Email: eopara@wakehealth.edu

Project Description: We have recently described chemical methods to engineer polymeric alginate to make the resultant hydrogel resistant to acidic environment such as the stomach but sensitive to neutral-basic pH conditions as occur in the intestine. This characteristic feature makes the hydrogel a unique delivery vehicle for therapeutic biologics that need protection from the acids stomach but released in the intestine where the hydrogel degrades to release its payload. The release of the therapeutic agents in the small intestine where the absorption of orally ingested materials takes place enhances the bioavailability of such agents with the collateral effect of reducing therapeutic doses and eliminating unwanted side effects. In addition, safe delivery of certain therapeutic agents to the intestine makes it feasible to use unique biologics against intestinal cancers.

Other Notes: This research effort is being performed at the Wake Forest Institute for Regenerative Medicine (WFIRM), and you will have the opportunity to work on a range of projects that focus on the design and applications of biomaterials in drug delivery and tissue engineering for application in diabetes and other diseases.
2021 Faculty Advisor Request Form for Graduate Student Position

Location:
Richard H. Dean Building
391 Technology Way
Winston-Salem, NC 27101

Project Title: Bioengineering a bioartificial pancreas

Position Need: MS/PhD student(s) (MS preferred), start May or August 2021

Advisor:
Emmanuel C. Opara, PhD
Professor, Institute for Regenerative Medicine
Professor, Biomedical Engineering
Phone: (336) 713-1297
Email: eopara@wakehealth.edu

Project Description:
The objective in this research is to design a bioengineered functional endocrine pancreas that is made with an encapsulation matrix that mimics the native microenvironment in which pancreatic islet cells are housed. The approach is to fabricate an alginate-based matrix whose stiffness resembles that of the native pancreatic scaffold and to embed in this matrix extracellular membrane (ECM) proteins that will provide all the biochemical and biological cues (collagen, laminin, fibronectin, integrins, and growth factors) that will support the encapsulated cells for long-term viability and function. This project involves both *in vitro* and *in vivo* experiments to test the viability of the engineered tissue.

Other Notes:
This research effort is being performed at the Wake Forest Institute for Regenerative Medicine (WFIRM) and you will have the opportunity to work on a range of projects that focus on the applications of biomaterials and tissue engineering in diabetes and development of bioartificial organs.
Project Title:
Bioartificial Ovary for Cell-based Hormone Therapy

Position Need:
MS/PhD student(s) (MS preferred), start May or August 2021

Advisor:
Emmanuel C. Opara, PhD
Professor, Institute for Regenerative Medicine
Professor, Biomedical Engineering
Phone: (336) 713-1297
Email: eopara@wakehealth.edu

Project Description:
Although medications under the umbrella of hormone replacement therapy can compensate for the loss of ovarian hormone production, this treatment modality can result in higher-than-normal hormone levels and complications. My laboratory is working on a cell-based hormone therapy – essentially a bioartificial ovary to deliver sex hormones in a more natural manner than drugs. The project involves using donor ovarian cells that are "encapsulated" in the same fashion as the natural architecture of follicular cells with thin membranes that allow oxygen and nutrients to enter the tissue construct, but prevent immune factors that would cause the patient to reject the cells. In in vitro studies, we showed that the encapsulated cells secreted sex hormones, demonstrating for the first time that the hormone-producing units of ovaries can be engineered outside the body. In preliminary in vivo studies published recently, we have tested the encapsulated cells and shown high efficacy of the tissue constructs in the restoration of physiological levels of sex hormones as well as prevention of co-morbidities associated with ovarian failure.

Other Notes:
This research effort is being performed at the Wake Forest Institute for Regenerative Medicine (WFIRM) and you will have the opportunity to work on a range of projects that focus on the applications of biomaterials and tissue engineering in diabetes and development of bioartificial organs.
2021 Faculty Advisor Request form for Graduate Student Position

Location: Virginia Tech

<table>
<thead>
<tr>
<th>Project Title</th>
<th>Naturalistic Driving Data Analyses – Various Projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position Need</td>
<td>1 PhD, 1 Masters, start May or August 2021</td>
</tr>
<tr>
<td>Funding</td>
<td>Funded via a GRA</td>
</tr>
</tbody>
</table>

Advisor: Miguel Perez, PhD
Associate Professor
Department of Biomedical Engineering and Mechanics
School of Biomedical Engineering and Sciences
Virginia Tech
Director, CDRAS
Virginia Tech Transportation Institute
3500 Transportation Research Plaza
Blacksburg, VA 24061
Phone: (540) 231-1537
Fax: (540) 231-1555
Email: mperez@vt.edu
Website: https://www.vtti.vt.edu/research/cdras/index.php

Specific Project Description: The Virginia Tech Transportation Institute houses over 90% of the naturalistic driving data in the world. We work with a variety of customers, both public and private, that are interested in leveraging those data to understand driver behavior, decisions, and actions. In turn, this understanding yields insights that can improve the safety and efficiency of surface transportation. Projects range from detailed investigations of particular drive behaviors while driving (e.g., texting), to analyses of causal factors for crashes, to understanding of occupant positioning pre-crash, to design of crash countermeasure systems, to examinations of crash pulses in particular crash scenarios, to (more recently) synthesizing data in ways that are useful for the design and operation of automated vehicles.

Other Notes: VTII continues to collect similar data on an ongoing basis, generally on vehicles with newer technologies. Most recently, this includes vehicles with on-board Level 2 automation technologies.
Faculty Advisor Request form for Graduate Student Position

Location: Virginia Tech

<table>
<thead>
<tr>
<th>Project Title:</th>
<th>TBD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position Need:</td>
<td>PhD Students, start Fall 2021</td>
</tr>
<tr>
<td>Funding:</td>
<td>Funded via a GRA</td>
</tr>
</tbody>
</table>

Advisor:

Robin Queen, PhD
Associate Professor, Virginia Tech
Director, Granata Biomechanics Lab
300 Norris Hall, Blacksburg, VA 24061
Phone: (540) 231-3134
Email: rmqueen@vt.edu
http://www.beam.vt.edu/granatalab

Specific Project Description: Various projects in process. Here's an example of one:

Measuring landing mechanics during rehabilitation from an ACL reconstruction

Unfortunately, athletes returning to sport following ACL reconstruction surgery currently have a high risk for secondary injuries. In this project, we are measuring lower extremity mechanics during jump-landing tasks in various outpatient physical therapy clinics in Southwest Virginia. Our lab recently found that force sensing shoe insoles and 2D video analysis are valid and repeatable for assessing landing kinetics and kinematics, respectively. Our long term goal is to use these clinically feasible technologies to both help physical therapists train patients to land better and help surgeons decide if a patient is ready to return to sport.

Other Notes:
2021 Faculty Advisor Request Form for Graduate Student Position

Location: Wake Forest University

Project Title: Exploiting tissue engineered organoids for the study of liver fatty acid metabolism

Position Need: 1 MS or PhD start August 2021

Funding: TBD

Advisor: Elaheh Rahbar, PhD
Assistant Professor, Biomedical Engineering, WFU Campus
Translational Trauma Research Lab
School of Biomedical Engineering and Sciences
575 N. Patterson Ave, Suite 5300
Winston-Salem, NC 27101
Email: erahbar@wakehealth.edu

Specific Project Description:
Dietary PUFA supplements (e.g. fish oil) have been increasingly recommended for the reduction of inflammation and improving cell repair after injury. However, genetic variants associated with differential PUFA metabolic rates disproportionately affect African ancestral populations and this raises major concerns about a “one-size fits all” approach. This research plan will identify specific mechanisms in which dietary PUFAs modulate inflammation and cell repair after injury using a tissue engineered liver organoid platform.

In this project, the student will exploit a tissue engineered liver model to elucidate key gene-diet interactions linking dietary PUFAs to inflammation after injury. Experiments will be conducted to characterize the inflammatory, coagulation and metabolic changes following varying degrees of liver ischemia-reperfusion injuries.

Other Notes: This research effort will be a collaboration between BME, Regenerative Medicine and the Center for Precision Medicine at Wake Forest. The student will have the opportunity to work on a range of projects in the field of traumatic injury, 3D printing, tissue engineering, organoid development, and statistical modeling using -omic data.
2021 Faculty Advisor Request Form for Graduate Student Position

<table>
<thead>
<tr>
<th>Location:</th>
<th>Wake Forest University</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Title:</td>
<td>Computational Fluid Dynamic Modeling of Hemorrhage Control Devices</td>
</tr>
<tr>
<td>Position Need:</td>
<td>1 MS/PhD/Postdoc (PhD preferred), start June 2021</td>
</tr>
<tr>
<td>Funding:</td>
<td>TBD</td>
</tr>
</tbody>
</table>
| **Advisor:** | Elaheh Rahbar, PhD
Assistant Professor, Biomedical Engineering, WFU Campus
Translational Trauma Research Lab
School of Biomedical Engineering and Sciences
575 N. Patterson Ave, Suite 530
Winston-Salem, NC 27101
Email: erahbar@wakehealth.edu |

Specific Project Description:

Non-compressible hemorrhage, referring to regions of the body that cannot be tourniquet pose a serious threat to one’s survival. To address this problem, Endovascular Aortic Control (EVAC) devices have been implemented to create a partial occlusion of the aortofemoral artery via inflation of a balloon catheter. However, these methods are of high risk, often resulting in significant ischemic injury and vascular collapse. This project, exploits CFD modeling to better understand the hemodynamics during hemorrhage and EVAC implementation. The student will apply learned CFD and finite element skills to quantify key fluid mechanics properties (e.g. shear stress, blood pressure) in the aortofemoral region. This data will help inform improved designs of EVAC devices, ensuring the restoration of blood pressure and fluid flow, while delivering sufficient oxygen to mitigate ischemic injury.

Other Notes:

This research effort will be a collaboration between BME, Center for Injury Biomechanics, and the Cardiovascular Surgery departments at Wake Forest. The student will have the opportunity to work on a range of projects in the field of traumatic injury, imaging, computational modeling, medical device testing and animal models. A strong background in fluid mechanics and finite element modeling is preferred.
2021 Faculty Advisor Request form for Graduate Student Position

Location: Wake Forest School of Medicine

Project Title: Genome and complex image analysis in neuropathies and pain
Position Need: 1 MS/PhD student
Funding: NIH R01 and internal grant

Advisor: E. Alfonso Romero-Sandoval, MD, PhD
Associate Professor of Anesthesiology
Pain Mechanisms Laboratory
Wake Forest School of Medicine
1 Medical Center Blvd, Winston-Salem, NC 27157
Phone: 336-716-2725. Email: eromeros@wakehealth.edu

Specific Project Description: My lab focuses on pain and inflammation after tissue damage, either by physical trauma (surgery), pharmacologic treatments (chemotherapy) or metabolic conditions (diabetes). We utilize a wide range of techniques including behavioral assessments in small rodents, tissue collection from animals or human subjects (healthy or patients) for pathological or molecular biology assessments (immunohistochemistry, Western blot, ELISA, qPCR, etc.), cellular cultures, genetic manipulation, or clinical data analysis. We are currently using transcriptome analyses via bulk or single cells RNA sequencing. We are also collecting complex images from our in vitro or ex vivo studies to understand how neurons are damaged or how tissue heals after injury. These data sets are large, and we are constantly trying to develop innovative ways to analyze them in an effective and meaningful fashion (see images below). Our students and trainees are exposed to all these techniques and approaches, so they become very familiar with all aspects of the projects. My lab is part of the interdisciplinary and collaborative group of preclinical and clinical research faculty within the Pain Mechanisms Lab focused on translational pain research. The following images depict how sensory neurons (red) grow normally (left) ex vivo and how these neurite expansions (green) are altered by chemotherapeutic agents or the exposure to toxic immune cells (right). We also study wound healing using organotypic skin tissues. These images show how new epithelium grows and how its cellularity changes when we induce a genetic alteration in immune cells. When we alter the genotype of immune cells we produce changes in thousands of genes, as shown in this volcano plot image.

Other Notes: The research will be conducted in the Pain Mechanisms Lab, Hanes building, WF Baptist Medical Center
2021 Faculty Advisor Request form for Graduate Student Position

Location: Wake Forest University

Project Title: Quantifying Brain Response with the Atlas-Based Brain Model
Position Need: MS or PhD, May or August 2021
Support: Graduate Research Fellowship, NIH, Graduate School Support

Advisor: Joel D. Stitzel, PhD, [pubmed](#), [linkedin](#)

Professor, Biomedical Engineering, WFU Campus
Center for Injury Biomechanics at WFU
575 N. Patterson Ave, Suite 530, Winston-Salem, NC 27101
jstitzel@wakehealth.edu, CIB at WFU

Specific Project Description:
- Further validation of the atlas-based brain model (ABM)
- Improving the biofidelity of the brain-skull interface of the ABM and updating the brain material model
- Incorporating diffusion tensor imaging (DTI) tracts into model
- Simulating real-world head impacts collected from sports including football, hockey, soccer, gymnastics, and rugby
- The long term benefit of the research will be to allow equipment designers, researchers, and clinicians to better prevent, mitigate, identify and treat injuries to help improve sport safety.
- ABM development: Reference
- ABM application: Reference

Other Notes: This research effort is on the Wake Forest Campus of the Center for Injury Biomechanics (CIB) with opportunities to work on a range of projects in the field of automobile, military, aerospace, and sports biomechanics.
2021 Faculty Advisor Request form for Graduate Student Position

Location: Wake Forest University

Project Title: Computational Assessment of Body Kinematics and Injury Risks for Astronauts during Landing/Launch in Various Environments

Position Need: MS or PhD, May or August 2021

Support: NASA HRP Grant, Graduate Student Fellowship, Graduate School Funding

Advisor: Joel D. Stitzel, PhD, [pubmed](https://pubmed.ncbi.nlm.nih.gov), [linkedin](https://www.linkedin.com)

Professor, Biomedical Engineering, WFU Campus
Center for Injury Biomechanics at WFU
575 N. Patterson Ave, Suite 530, Winston-Salem, NC 27101
jsstitzel@wakehealth.edu, [CIB at WFU](https://cib.wfubmc.edu)

Landing on the Earth

Landing on the Moon

Dynamic Interaction

Specific Project Description:

- We are using finite element (FE) human body model to assess body kinematics and associated injury risk for astronauts in different postures - standing and seated under dynamic loading conditions associated with lunar spaceflight landing and launch missions.
- We are also studying the effects of interactions between astronaut body regions and spaceflight equipment - spaceflight seat and mobility spacesuit on astronaut injury risks during space missions.
- The long term objective of this research is to improve astronaut safety during future space missions to Moon and Mars by identifying the optimal posture and space vehicle design to minimize injury risks.

Other Notes: This research effort is on the Wake Forest Campus of the Center for Injury Biomechanics (CIB) with opportunities to work on a range of projects in the field of automobile, military, aerospace, and sports biomechanics.
2021 Faculty Advisor Request form for Graduate Student Position

Location: Wake Forest University

Project Title: Crash Injury Research and Engineering Network (CIREN)

Position Need: MS or PhD, May or August 2021

Support: Graduate Research Fellowship, National Highway Traffic Safety Administration (NHTSA), Graduate School Support

Advisor(s): Joel D. Stitzel, PhD, [pubmed](https://pubmed.ncbi.nlm.nih.gov/), [linkedin](https://www.linkedin.com/)

Professor, Biomedical Engineering, WFU Campus
Center for Injury Biomechanics at WFU
575 N. Patterson Ave, Suite 530, Winston-Salem, NC 27101
jstitzel@wakehealth.edu, [CIB at WFU](https://cib.wakehealth.edu)

Specific Project Description:

- CIREN has been an ongoing project at WFUBMC since 2005. You’ll work closely with faculty and team of expert staff investigators.
- Conducts detailed investigations of real-world motor vehicle crashes and determines mechanism and causation of occupant injuries to improve prevention, mitigation, and treatment of motor vehicle crash injuries.
- Involves collaboration and working closely with a broad range of medical specialties, including biomedical engineers, crash investigators, radiologists, orthopedic surgeons, and trauma surgeons.
- We also conduct finite element (FE) modeling reconstructions of CIREN crashes using the simplified GHBMC human body model and a simplified vehicle model. These reconstructions provide kinematic visualizations and injury analyses to supplement our investigations.
- CIREN is a research catalyst that can be used to conduct a wide range of motor vehicle trauma studies. A list of publications before 2016, many from our CIREN center, as well as general information about CIREN, can be found [here](https://cib.wakehealth.edu/publications).

Other Notes: This research effort is on the Wake Forest Campus of the Center for Injury Biomechanics (CIB) with opportunities to work on a range of projects in the field of automobile, military, aerospace, and sports biomechanics.
2021 Faculty Advisor Request form for Graduate Student Position

Location: Wake Forest University

Project Title: Youth Gymnastics Head Impact Exposure and Environmental Kinematic Quantification with Instrumented Mouthpiece

Position Need: MS or PhD, May or August 2021

Support: Graduate Research Fellowship, NIH, Graduate School Support

Advisor: Joel D. Stitzel, PhD, [pubmed](https://pubmed.ncbi.nlm.nih.gov/), [linkedin](https://www.linkedin.com/in/ioeldstitzel/)

Professor, Biomedical Engineering, WFU Campus
Center for Injury Biomechanics at WFU
575 N. Patterson Ave, Suite 530, Winston-Salem, NC 27101
jstitzel@wakehealth.edu, [CIB at WFU](https://cib.wfu.edu/)

Specific Project Description:

- Development, testing, and field deployment of an instrumented mouthguard in youth gymnastics.
- Head impact data and video will be analyzed to assess skills and activities associated with measurements collected from the instrumented mouthpiece.
- We also collect measures of neurological function to assess changes that may result from performance of high-speed gymnastics skills. The long term benefit of the research will be to allow equipment designers, researchers, and clinicians to better prevent, mitigate, identify and treat injuries to help improve sport safety.
- **Head Impact Exposure in Women's Artistic Gymnastics.** Pritchard N.S., Urban J, Miller L, Stitzel J. Presented at the 2020 Summer Biomechanics, Bioengineering, and Biotransport Conference.

Other Notes: This research effort is on the Wake Forest Campus of the Center for Injury Biomechanics (CIB) with opportunities to work on a range of projects in the field of automobile, military, aerospace, and sports biomechanics.
2021 Faculty Advisor Request form for Graduate Student Position

Location: Wake Forest University

Project Title: Youth Hockey Head Impact Exposure Quantification with Instrumented Mouthguard

Position Need: MS or PhD, May or August 2021

Support: Graduate Research Fellowship, NIH, Graduate School Support

Advisor: Joel D. Stitzel, PhD, [pubmed](https://pubmed.ncbi.nlm.nih.gov), [linkedin](https://www.linkedin.com/in/joeldstitzel/)

Professor, Biomedical Engineering, WFU Campus
Center for Injury Biomechanics at WFU
575 N. Patterson Ave, Suite 530, Winston-Salem, NC 27101
jstitzel@wakehealth.edu, [CIB at WFU](https://www.wakehealth.edu/centers-and-institutes/cib)

Specific Project Description:
- Development, testing, and field deployment of an instrumented mouthguard in competitive youth ice hockey.
- On-ice head impact data and video will be analyzed to assess on-field activity associated with measurements collected from the instrumented mouthpiece.
- We also conduct finite element (FE) modeling of the data with a head FE model. The long-term benefit of the research will be to allow equipment designers, researchers, and clinicians to better prevent, mitigate, identify and treat injuries to help improve sport safety.
- American Academy of Neurology Sports Concussion [Reference](https://www.aan.com)

Other Notes: This research effort is on the Wake Forest Campus of the Center for Injury Biomechanics (CIB) with opportunities to work on a range of projects in the field of automobile, military, aerospace, and sports biomechanics.
2021 Faculty Advisor Request form for Graduate Student Position

Location: Wake Forest University

Project Title: Head Impact Exposure Quantification and Mitigation in Motorsports

Position Need: MS or PhD, May or August 2021

Support: Graduate Research Fellowship, NIH, Graduate School Support

Advisor: Joel D. Stitzel, PhD, [pubmed](https://pubmed.ncbi.nlm.nih.gov), [linkedin](https://www.linkedin.com)

Professor, Biomedical Engineering, WFU Campus
Center for Injury Biomechanics at WFU
575 N. Patterson Ave, Suite 530, Winston-Salem, NC 27101
jsitzel@wakehealth.edu, CIB at WFU

Specific Project Description:
- Pilot testing of individualized mouthpiece deployment in motorsports
- Analysis to quantify environmental and crash head kinematics
- Finite element (FE) modeling for injury risk assessment for drivers in crash scenarios
- FE simulation to optimize safety measures and driver comfort
- Injury risk assessment: [Reference](#)
- Optimization of safety measures: [Reference](#)

Other Notes: This research effort is on the Wake Forest Campus of the Center for Injury Biomechanics (CIB) with opportunities to work on a range of projects in the field of automobile, military, aerospace, and sports biomechanics.
2021 Faculty Advisor Request form for Graduate Student Position

Location: Wake Forest University

Project Title: Quantifying Head Impact Exposure in Youth and Collegiate / Adult Soccer with Instrumented Mouthpiece

Position Need: MS or PhD, May or August 2021

Support: Graduate Research Fellowship, NIH, Graduate School Support

Advisor: Joel D. Stitzel, PhD, [pubmed](#), [linkedin](#)

Professor, Biomedical Engineering, WFU Campus
Center for Injury Biomechanics at WFU
575 N. Patterson Ave, Suite 530, Winston-Salem, NC 27101
jstitzel@wakehealth.edu, [CIB at WFU](#)

Specific Project Description:
- Development, testing, and field deployment of an instrumented mouthguard in youth and collegiate soccer
- Analysis of on-field head impact data and time-synchronized video to assess on-field activity associated with measurements collected from the instrumented mouthpiece
- Finite element (FE) modeling of head impact data with a FE brain model to evaluate tissue-level stresses and strains
- Investigating potential modifiers of head impact exposure and concussion risk (e.g., drill types, athlete fatigue, header technique)
- The long term benefit of the research will be to assist equipment designers, researchers, and clinicians to better prevent, mitigate, identify, and treat injuries to help improve sport safety.
- Reference: [Development, Validation, and Pilot Field Deployment of a Custom Mouthpiece for Head Impact Measurement](#)

Other Notes: This research effort is on the Wake Forest Campus of the Center for Injury Biomechanics (CIB) with opportunities to work on a range of projects in the field of automobile, military, aerospace, and sports biomechanics.
2021 Faculty Advisor Request form for Graduate Student Position

Location: Wake Forest School of Medicine

Project Title: Transfer Learning based computable phenotype generation via clinical and Genomic Sequencing data

Position Need: PhD student for May or August 2021

Funding: National Foundation for Cancer Research

Advisor:

Contact info:
Umit Topaloglu, PhD, FAMIA
Associate Professor of Cancer Biology and Biostatistics & Data Science, Wake Forest University School of Medicine,
Medical Center Boulevard, Winston-Salem, NC 27157
umit.topaloglu@wakehealth.edu

Wei Zhang PhD
Hanes and Willis Family Professor in Cancer
Wake Forest University School of Medicine,
Medical Center Boulevard, Winston-Salem, NC 27157
wezhang@wakehealth.edu

Specific Project Description:
As new Precision Medicine approaches are trying to comprehend the link between genes and the phenotypes, and an unprecedented amount of genomic data being generated, computational method already play substantial roles on the way genomic and multimodal biomedical data are analyzed. Consequently, such methods will result in better translation of genomic variants towards understanding phenotypes and real-world evidence. The computational phenotype predictions, particularly deep learning-based machine learning approaches, have hopes and promise of identifying potential linkages between disease groups and genetic variations to predict the outcome or response to treatment. However, while federated machine learning methods are gaining popularity recently, their application to electronic health records is relatively novel and require extensive research, particularly in areas to take advantage of recent developments in deep learning with large sample sizes. Therefore, we would like to develop and test a cloud-based informatics infrastructure to identify and integrate clinical data with the genomic data sets across the institutions that will leave the patient data in each institution without exchanging data, thereby minimizing patient data privacy concerns. Additionally, we will develop a model that will allow investigators train and test deep learning based predictive models and computable phenotypes utilizing the clinical and the sequencing data across multiple institutions in a privacy preserving fashion yet take advantage of large sample size from participating institutions.

Other Notes: This work will provide great opportunity to learn and gain expertise on Deep Learning, Privacy Preserving AI on a large network, Computable Phenotypes, and Cloud Computing.
2020 Faculty Advisor Request form for Graduate Student Position

<table>
<thead>
<tr>
<th>Location:</th>
<th>Virginia Tech</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Title:</td>
<td>Validation of Pedestrian Finite Element (FE) Models</td>
</tr>
<tr>
<td>Position Need:</td>
<td>1 MS/PhD (PhD preferred), start January or August 2021</td>
</tr>
<tr>
<td>Funding:</td>
<td>Funded via a GRA, contract in place</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Advisor:</th>
<th>Costin Untaroiu, PhD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Associate Professor</td>
<td></td>
</tr>
<tr>
<td>Virginia Tech - Wake Forest University</td>
<td></td>
</tr>
<tr>
<td>School of Biomedical Engineering and Sciences</td>
<td></td>
</tr>
<tr>
<td>Center for Injury Biomechanics</td>
<td></td>
</tr>
<tr>
<td>VCOM II Building, 2280 Kraft Dr.</td>
<td></td>
</tr>
<tr>
<td>Blacksburg, VA 24060</td>
<td></td>
</tr>
<tr>
<td>Phone: (540) 231-1890; Fax: (540) 231-8997</td>
<td></td>
</tr>
<tr>
<td>Email: costin@vt.edu; www.CIB.vt.edu</td>
<td></td>
</tr>
</tbody>
</table>

| Specific Project Description: | The main goal of this project is to develop and validate new FE models of pedestrians with different anthropometries (50th male, 5th female, 95th male, 6 year-old child). In this multi-participant project will be involved Wake Forest University and several major automotive manufacturers. Our work will involve the validation of human body components (e.g. lower limbs, thorax), the validations of full pedestrian models during vehicle impacts, and the model verification in EuroNCAP testing conditions. Multi-parametric studies will be also performed to optimize the performance of the models and to investigate the sensitivity of the models in terms of material properties, friction, or pre-crash posture. Finally, the pedestrian models will be used in vehicle-pedestrian simulations to better understand the injury mechanisms and to improve the front-end design of new vehicles. |

| Other Notes: | This research effort will be in the Center for Injury Biomechanics (CIB) and you will have the opportunity to work on a range of projects in the field of automobile safety, military restraints, and sports biomechanics. The main facility is our dynamic sled crash facility which is located 2 miles from campus in the Corporate Research Center. Here we can perform full scale large tests on vehicles to examine restraint performance. The research at the CIB combines experimental testing, with computational modeling, and case analysis to investigate human injury biomechanics. |
2020 Faculty Advisor Request form for Graduate Student Position

<table>
<thead>
<tr>
<th>Location:</th>
<th>Virginia Tech</th>
</tr>
</thead>
</table>

Project Title:	Improving Protection of Rear Seat Occupants Using Finite Element Analysis
Position Need:	1 MS/PhD (PhD preferred), start January or August 2021
Funding:	Funded via a GRA, contract in place

<table>
<thead>
<tr>
<th>Advisor:</th>
<th>Costin Untaroiu, PhD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Associate Professor</td>
<td></td>
</tr>
<tr>
<td>Virginia Tech - Wake Forest University</td>
<td></td>
</tr>
<tr>
<td>School of Biomedical Engineering and Sciences</td>
<td></td>
</tr>
<tr>
<td>Center for Injury Biomechanics</td>
<td></td>
</tr>
<tr>
<td>VCOM II Building, 2280 Kraft Dr.</td>
<td></td>
</tr>
<tr>
<td>Blacksburg, VA 24060</td>
<td></td>
</tr>
<tr>
<td>Phone: (540) 231-1890; Fax: (540) 231-8997</td>
<td></td>
</tr>
<tr>
<td>Email: costin@vt.edu; www.CIB.vt.edu</td>
<td></td>
</tr>
</tbody>
</table>

| Specific Project Description: | Traditionally, government crash test regulations as well as academic and industry testing up to this point have all focused on the front seats. The lagging performance of the rear seats represents a problem because thousands of rear-seated occupants are injured or killed each year. With the rise in autonomous driving systems, the amount of occupants sitting in the rear seats, and therefore sustaining injury, could increase dramatically. In this study, rear seats of a range of current vehicles are reconstructed to examine injury risk with the finite element (FE) models of anthropomorphic test devices (ATD). Then, parametric studies on key variables that influence injury risk in the rear seats are performed. One of the injury mechanisms prevalent in the rear seats is submarining. Submarining likelihood and injury probability is difficult to predict with ATD; however, human body models can help to improve injury prediction in these cases. The findings and methodology from this project is expected to have the ability to add critical contributions to the understanding of injury risk and injury mechanisms in the rear seats |

| Other Notes: | This research effort will be in the Center for Injury Biomechanics (CIB) and you will have the opportunity to work on a range of projects in the field of automobile safety, military restraints, and sports biomechanics. The main facility is our dynamic sled crash facility which is located 2 miles from campus in the Corporate Research Center. Here we can perform full scale large tests on vehicles to examine restraint performance. The research at the CIB combines experimental testing, with computational modeling, and case analysis to investigate human injury biomechanics. |
2021 Faculty Advisor Request form for Graduate Student Position

Location: Wake Forest University

Project Title: Evidence-Based Intervention to Reduce Head Impact Exposure

Position Need: 1 MS/PhD (PhD preferred), start May or August 2021

Funding: Funded via a GRA, contract in place

Advisor: Jillian Urban, PhD, MPH
Assistant Professor, Biomedical Engineering, WFU Campus
VT-WFU Center for Injury Biomechanics
School of Biomedical Engineering and Sciences
575 N. Patterson Ave, Suite 120
Winston-Salem, NC 27101
jurban@wakehealth.edu
www.CIB.vt.edu

Specific Project Description: The objective of this project is to develop and pilot test an evidence-based intervention to reduce head impact exposure in youth football, using a community-engaged approach. In this study, biomechanical data will be collected and quantified during team activities and used to inform discussions with stakeholders (coaches, parents, league officials) for the development of an intervention aimed to reduce head impact exposure in practices. The developed intervention will be pilot tested to evaluate the effectiveness of the intervention at reducing head impact exposure. This research project combines biomechanics and public health and will seek to improve head impact safety for young athletes participating in sports.

Other Notes: This research effort will be in the Center for Injury Biomechanics (CIB) and you will have the opportunity to work on a range of projects in the field of automobile safety, military restraints, and sports biomechanics. The CIB has two primary research facilities. The first is in the WFU School of Medicine in Winston-Salem, NC and the second is at Virginia Tech. The research at the CIB combines experimental testing, computational modeling, and case analysis to investigate human injury biomechanics.
Location: Virginia Tech

Project Title: Targeting intracellular bacteria that drive cancer growth and metastasis
Position Need: 1 PhD student, starting August 2021
Funding: Funded via GRA support, contract in place

Advisor: Scott S. Verbridge, PhD
Associate Professor
Virginia Tech - Wake Forest University
School of Biomedical Engineering and Sciences
330 Kelly Hall, 325 Stanger Street MC 0298
Blacksburg, VA 24061
Phone: (540) 231-6908
Email: sverb@vt.edu
www.verbridgelab.org

Specific Project Description: The work in the Verbridge lab broadly involves developing advanced tissue engineered models of the heterogeneous tumor microenvironment to analyze the role of tumor-tissue interactions in cancer progression and therapy response. One funded GRA position is currently available. This position will focus on developing microfabricated models (left, upper) of a vascularized tumor microenvironment (TME) containing infected malignant cells to analyze the dynamics of bacterial spread within tumor tissues. Major questions pertain to understanding how these bacteria influence complex cancer processes such as migration (below, right, as we recently published in a Science Signaling cover article, July, 2020).

Other Notes: This work will be carried out in the Verbridge lab, but is also highly interdisciplinary, involving collaboration with researchers in Biochemistry, Chemical Engineering, Biological Sciences, Veterinary Medicine, and the Wake Forest Comprehensive Cancer Center. This project is supported by funding the NIH and NSF.
2021 Faculty Advisor Request form for Graduate Student Position

Location: Wake Forest School of Medicine

Project Title: Micropatterned substrates to produce breast organoids

Position Need: 1 MS student, interested in 3D printing, cell biology, and product development

Funding: DoD Breast Cancer Research Program

Advisor: Pierre Vidi, PhD
Associate Professor
Wake Forest School of Medicine
Cancer Biology
(336) 716 7122
pvidi@wakehealth.edu

Specific Project Description:

Drug screening still relies on monolayer cell cultures. Yet cells behave very differently in “2D” compared to the 3D context of the human body. Normal mammary gland and breast tumor organoids can be produced in 3D culture with hydrogel matrices.

A challenge for high-throughput assays with organoids is the loss and unevenness of the hydrogel, (e.g. menisci in small wells).

The goal of this project is to develop a novel 96-well culture device, using micropatterning to prevent meniscus formation and to promote hydrogel retention.

Applications include drug screening for chemoprevention and cancer treatment.

Note: The student will have access to state-of-the art 3D printing to build prototypes at the Wake Forest Innovations Core laboratory. He/she will have support from a laboratory technician in the Vidi lab for 3D cultures of breast epithelial cells.
2021 Faculty Advisor Request form for Graduate Student Position

Location: Wake Forest School of Medicine

Project Title: Point Spread Function Engineering for 3D Cell Imaging
Position Need: 1 PhD student (preferred) or 1 MS student, interested in optics
Funding: NIH (PS-ON U01 grant)

Advisors:

Pierre Vidi, PhD
Associate Professor
Wake Forest School of Medicine
Cancer Biology
(336) 716 7122
pvidi@wakehealth.edu

Keith Bonin, PhD
Professor
Wake Forest University
Physics Department
(336) 758-4962
bonin@wfu.edu

Specific Project Description:
Rapid 3D imaging enables accurate localization of macromolecules in live cells. Most current techniques scan through the sample to capture the 3rd dimension, with the limitation to consume time during which specimens suffer from photodamage.

For this project, the student will apply a novel point spread function (PSF) engineering concept, initially developed for the detection of space debris, to fluorescence microscopy. A diffractive optical element (DOE) will be designed and fabricated to create a rotatable PSF in the image plane on the camera. This rPSF-DOE will transform circular spots in the sample into larger elliptically shaped spots on the camera (see schematic). The orientation of the ellipse will depend on the axial depth of the spot source, thus allowing us to extract x/y/z positions from a single image.

The student will also develop algorithms for DOE optics computations and for data analyses (such as 3D spot tracking).

Note: This multidisciplinary project is part of the Physical Sciences - Oncology Network (PS-ON) program of the NCI (https://physics.cancer.gov)
Location: Wake Forest University School of Medicine

Project Title: Biomaterial Composites for Musculoskeletal, Nervous Tissue and Cardiovascular Repair

Position Need: 2 Ph.D. Start date May – August 2021

Advisor: Professor, William D. Wagner, PhD., Fellow AHA
Department of Plastic and Reconstructive Surgery, Wake Forest University School of Medicine
Core Faculty, Department of Biomedical Engineering, School of Biomedical Engineering and Sciences WFU/VT
Affiliate Faculty, Center for Nanotechnology and Molecular Materials

Medical Center Boulevard
Winston Salem, NC 27157-1075
Phone: (336)716-2135
Email: wwagner@wakehealth.edu

Dr. Wagner’s research involves a biomaterial-based approach for tissue repair and regeneration. He has produced biomaterials primarily for the cardiovascular, nervous, and musculoskeletal systems. His current projects include development, testing and use of elastomeric composite biomaterials and cryogels. His motto is “We fabricate anything that will make our Health better”

Specific Project Description: We have developed new polymeric and fibrous biomaterials useful to serve as substitutes for heart valves and arteries as well as bone and peripheral nerve repair. The bioengineered constructs will serve various surgical purposes and represent the next generation of products to be used clinically.

Dr. Wagner’s research program has a long history of training that includes developing writing skills, applying for research grants, patenting new discoveries. Students are trained to conduct in vitro studies and if needed use animal models for preclinical trials. This research is located in the Plastic and Reconstructive Surgery Research Program and uses the extensive resources of the University including the Wake Forest Center for Nanotechnology and Molecular Materials, the Wake Forest Institute of Regenerative Medicine, and the Molecular and Translational Science Program.
2021 Faculty Advisor Request form for Graduate Student Position

<table>
<thead>
<tr>
<th>Location:</th>
<th>Virginia Tech</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Project Title:</th>
<th>Machine Learning Analysis of Tendon Ultrasound Images</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position Need:</td>
<td>MS or PhD student, starting August 2021</td>
</tr>
<tr>
<td>Funding:</td>
<td>GRA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Advisor:</th>
<th>Vincent Wang, Ph.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kevin P. Granata Faculty Fellow</td>
</tr>
<tr>
<td></td>
<td>Associate Professor</td>
</tr>
<tr>
<td></td>
<td>Biomedical Engineering and Mechanics (BEAM)</td>
</tr>
<tr>
<td></td>
<td>Lab location: 340 Kelly Hall, Virginia Tech</td>
</tr>
<tr>
<td></td>
<td>Office Phone: 540-231-1771</td>
</tr>
<tr>
<td></td>
<td>E-mail: vmwang@vt.edu</td>
</tr>
<tr>
<td></td>
<td>https://wanglab.beam.vt.edu/</td>
</tr>
</tbody>
</table>

| Specific Project Description: | Tendon injuries (e.g., to the patellar tendon, Achilles, or rotator cuff) are very common and can result in pain, swelling and decreased function. Diagnosis of tendinopathy is commonly based on a clinical examination supplemented by gray-scale ultrasonography (GS-US). As a high level of expertise is required for accurate detection of tissue pathology on GS-US, an objective tool that can aid in visual assessment of tendinopathy may facilitate clinical decision making. The aim of this project is to develop a machine learning algorithm (MLA) to classify GS-US images as diseased (tendinopathic) or non-diseased on the basis of image features. In addition to GS-US images, we will also acquire shear wave elastography (SWE) images which provide visual and quantitative assessments of shear modulus. The project will also investigate whether analysis of SWE images further increases the accuracy and reliability of our MLA. Our long-term goal is to develop an online tool which enables global users to upload tendon ultrasound images for rapid evaluation of injury status. |

| Other Notes: | Our lab group seeks a highly motivated graduate student with strong interests in machine learning, orthopedic imaging, and soft tissue biomechanics. The student will join an interdisciplinary, collaborative research team composed of engineers, computer scientists, and clinicians. |
2021 Faculty Advisor Request form for Graduate Student Position

<table>
<thead>
<tr>
<th>Location:</th>
<th>Virginia Tech</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Title:</td>
<td>Promoting Tendon Healing via Eccentric Muscle Loading</td>
</tr>
<tr>
<td>Position Need:</td>
<td>PhD student, starting August 2021</td>
</tr>
<tr>
<td>Funding:</td>
<td>GRA</td>
</tr>
</tbody>
</table>

Advisor: Vincent Wang, Ph.D.

- Kevin P. Granata Faculty Fellow
- Associate Professor
- Biomedical Engineering and Mechanics (BEAM)
- Lab location: 340 Kelly Hall, Virginia Tech
- Office Phone: 540-231-1771
- E-mail: vmwang@vt.edu
- https://wanglab.beam.vt.edu/

Specific Project Description:

Physical therapy (eccentric muscle loading, such as the “heel drop and raise” exercise) is among the few effective strategies to treat Achilles tendinopathy. However, neither the ideal “dose” of eccentric loading needed to achieve improved mechanical functionality nor the basic mechanisms by which the healing response occurs are well understood. This project will utilize a pre-clinical mouse model to elucidate the relative influence of load magnitude and exercise duration on the tendon healing response, as well as adaptation of the entire musculotendinous unit, using biomechanical, histologic, and gene expressions analyses. This project will generate novel data that can be used to inform effective clinical treatment strategies for tendinopathy.

Other Notes:

Our lab group seeks a highly motivated graduate student with strong interests in soft tissue biomechanics and mechanobiology. The student will join an interdisciplinary, collaborative research team composed of engineers, physiologists and clinicians. Additional opportunities will be available to participate in related orthopedic biomechanics and imaging studies.
2021 Faculty Advisor Request form for Graduate Student Position

Location: Wake Forest School of Medicine

<table>
<thead>
<tr>
<th>Project Title:</th>
<th>Image-based Modeling of Anatomical Variation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position Need:</td>
<td>MS, start May or August 2021</td>
</tr>
<tr>
<td>Funding:</td>
<td>Industry/Internal</td>
</tr>
<tr>
<td>Advisor:</td>
<td>Ashley Weaver, PhD</td>
</tr>
<tr>
<td></td>
<td>Associate Professor, Biomedical Engineering, WFU Campus</td>
</tr>
<tr>
<td></td>
<td>VT-WFU Center for Injury Biomechanics</td>
</tr>
<tr>
<td></td>
<td>School of Biomedical Engineering and Sciences</td>
</tr>
<tr>
<td></td>
<td>575 N. Patterson Ave</td>
</tr>
<tr>
<td></td>
<td>Winston-Salem, NC 27101</td>
</tr>
<tr>
<td></td>
<td>asweaver@wakehealth.edu</td>
</tr>
<tr>
<td></td>
<td>www.CIB.vt.edu</td>
</tr>
</tbody>
</table>

Specific Project Description: Anatomical variation such as cortical thickness, bone mineral density (BMD), and morphology is an important factor to consider in biomedical research. This research involves medical image analysis to characterize anatomical variation in the population, development of subject-specific and population-based anatomical models, and human body finite element modeling – with applications ranging from injury prediction, medical device design, and surgical planning. Radiological (CT/MRI) and modeling-based techniques will be used to create subject-specific and/or population-based models for particular patient demographics or disease states.

Other Notes: This research effort will be in the Center for Injury Biomechanics (CIB) and you will have the opportunity to work on a range of projects in the field of automobile safety, military restraints, and sports biomechanics. The CIB has two primary research facilities. The first is in the WFU School of Medicine in Winston-Salem, NC and the second is at Virginia Tech. The research at the CIB combines experimental testing, computational modeling, and case analysis to investigate human injury biomechanics.
2021 Faculty Advisor Request form for Graduate Student Position

Location: Wake Forest School of Medicine

<table>
<thead>
<tr>
<th>Project Title</th>
<th>Lumbar Spine Injury Tolerance and Mechanisms in Motor Vehicle Crashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position Need</td>
<td>MS or PhD, start May or August 2021</td>
</tr>
<tr>
<td>Funding</td>
<td>Internal (External Funds Pending)</td>
</tr>
</tbody>
</table>

Advisor: Ashley Weaver, PhD

Associate Professor, Biomedical Engineering, WFU Campus
VT-WFU Center for Injury Biomechanics
School of Biomedical Engineering and Sciences
575 N. Patterson Ave
Winston-Salem, NC 27101
asweaver@wakehealth.edu
www.CIB.vt.edu

Specific Project Description:
Motor vehicle crashes (MVCs) subject the lumbar spine to tension, compression, and flexion-extension moments. Since the combination of loads acting on the lumbar spine may influence injury tolerance and risk, there is a need for lumbar injury prediction criteria and models that account for multi-axis loading. Validated finite element models offer the opportunity to virtually reconstruct MVCs to determine the influence of occupant and vehicle factors on lumbar injury causation mechanisms. This project aims to improve the understanding of lumbar injury tolerance and the mechanisms of lumbar injury in MVCs by: 1) developing a composite lumbar injury criterion combining the axial forces and flexion-extension moments, 2) performing multi-scale validation of a human body finite element model at the vertebra, the functional spine unit, the lumbar column, and the whole body levels, and 3) conducting parametric finite element reconstructions of MVCs to determine the effect of lumbar bone mineral density, occupant posture, and seat structure on lumbar fracture mechanisms.

Other Notes:
This research effort will be in the Center for Injury Biomechanics (CIB) and you will have the opportunity to work on a range of projects in the field of automobile safety, military restraints, and sports biomechanics. The CIB has two primary research facilities. The first is in the WFU School of Medicine in Winston-Salem, NC and the second is at Virginia Tech. The research at the CIB combines experimental testing, computational modeling, and case analysis to investigate human injury biomechanics.
2021 Faculty Advisor Request Form for Graduate Student Position

Location: Wake Forest School of Medicine

<table>
<thead>
<tr>
<th>Project Title:</th>
<th>CT and MRI Modeling Assessment of Spine Anatomy and Injury Risk Following Long-Duration Spaceflight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position Need:</td>
<td>MS, start May or August 2021</td>
</tr>
<tr>
<td>Funding:</td>
<td>NASA</td>
</tr>
</tbody>
</table>

Advisor: Ashley Weaver, PhD
Associate Professor, Biomedical Engineering, WFU Campus
VT-WFU Center for Injury Biomechanics
School of Biomedical Engineering and Sciences
575 N. Patterson Ave
Winston-Salem, NC 27101
asweaver@wakehealth.edu
www.CIB.vt.edu

Specific Project Description:
Prolonged exposure of astronauts to microgravity during long-duration spaceflight can degrade the musculoskeletal system, increasing the risk of structural failure of these tissues when they experience dynamic loads. This study will measure the degradation of astronauts’ vertebrae and spinal muscles during missions aboard the International Space Station (ISS).

Changes in pre- and post-flight spine anatomy (vertebral morphology, cortex thickness, bone mineral density, muscle volume, and disc morphology) will be measured from existing astronaut quantitative computed tomography (qCT) and magnetic resonance imaging (MRI) scans, as well as from prospectively collected qCT and MRI scans from astronauts. Vertebral strength and injury risk will be quantified from simulations with a human body model altered to represent each astronaut’s pre- and post-flight vertebrae and spinal musculature.

Other Notes: This research effort will be in the Center for Injury Biomechanics (CIB) and you will have the opportunity to work on a range of projects in the field of automobile safety, military restraints, and sports biomechanics. The CIB has two primary research facilities. The first is in the WFU School of Medicine in Winston-Salem, NC and the second is at Virginia Tech. The research at the CIB combines experimental testing, computational modeling, and case analysis to investigate human injury biomechanics.
2021 Faculty Advisor Request form for Graduate Student Position

Location: Wake Forest School of Medicine

<table>
<thead>
<tr>
<th>Project Title:</th>
<th>Osteoprotective Interventions for Older Adults Losing Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position Need:</td>
<td>PhD or MS, start May or August 2021</td>
</tr>
<tr>
<td>Funding:</td>
<td>NIH</td>
</tr>
</tbody>
</table>

Advisor: Ashley Weaver, PhD

- Associate Professor, Biomedical Engineering, WFU Campus
- VT-WFU Center for Injury Biomechanics
- School of Biomedical Engineering and Sciences
- 575 N. Patterson Ave
- Winston-Salem, NC 27101
- asweaver@wakehealth.edu
- www.CIB.vt.edu

Specific Project Description:

Weight loss is controversial in older adults due to its association with bone loss and increased fracture risk. We are conducting several randomized controlled trials (RCTs) to test the effects of dietary (e.g. higher protein), exercise (e.g. resistance training), loading (e.g. weighted vest), and medication (e.g. bisphosphonates) interventions in preserving bone health in older adults as they lose weight. Our team analyzes computed tomography (CT) scans and creates subject-specific finite element (FE) models to assess changes in bone mineral density, bone thickness, bone marrow adiposity, and bone strength and fracture risk. These computational analyses produce data on the effectiveness of different interventions in protecting against bone loss and fracture in an aging population at high risk for fracture.

Other Notes:

This research effort will be in the Center for Injury Biomechanics (CIB) and you will have the opportunity to work on a range of projects in the field of automobile safety, military restraints, and sports biomechanics. The CIB has two primary research facilities. The first is in the WFU School of Medicine in Winston-Salem, NC and the second is at Virginia Tech. The research at the CIB combines experimental testing, computational modeling, and case analysis to investigate human injury biomechanics.
2021 Faculty Advisor Request Form for Graduate Student Position

Location: Wake Forest School of Medicine

Project Title: Imaging-driven biophysical modeling of cancer therapy response
Position Need: 1 PhD and 1 MS, start August 2021
Funding: NIH; faculty start-up funds

Advisor: Jared Weis, PhD
Assistant Professor, Biomedical Engineering, WFU Campus
School of Biomedical Engineering and Sciences
575 N. Patterson Ave, Suite 530
Winston-Salem, NC 27101
jweis@wakehealth.edu
www.weislab.org

Specific Project Description: The overall theme of research within the Weis lab is concentrated in developing and deploying computational modeling and non-invasive imaging methodologies to explore the nature of soft-tissue mechanics in cancer, with an emphasis on driving clinical therapeutic interventions. Research projects focus on the multi-disciplinary study of the multi-scale influences of mechanics in cancer progression and response to therapy, involving the development and validation of imaging-based biophysical modeling approaches that evaluate quantitative parameterization of cancer growth and therapy response properties based on observational imaging measurement data (MRI, CT, optical, etc.). Utilizing a mathematical modeling framework that incorporates mechanical signaling from the surrounding tissue microenvironment, predictions of the eventual response of cancer to therapy can be made with an overall goal of directing therapeutic intervention. The lab employs a hybrid experimental/computational approach towards imaging, modeling, and parameterization, and spans the length scale of cancer from preclinical in vitro cancer spheroid/organoid and in vivo cancer model systems to translational clinical-based investigations within the scope of several main projects:

- Multi-scale imaging data-driven biophysical modeling to predict the response of cancer to chemotherapy
- Mechanical stiffness imaging as a biomarker to evaluate and predict cancer therapeutic response
- Imaging-based biophysical modeling to diagnose tumor recurrence following stereotactic radiosurgery for brain metastasis
2021 Faculty Advisor Request form for Graduate Student Position

Location: Wake Forest School of Medicine

<table>
<thead>
<tr>
<th>Project Title</th>
<th>Development of intravascular cardiac devices to treat peripheral arterial disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position Need</td>
<td>PhD students, start in August 2021</td>
</tr>
<tr>
<td>Funding</td>
<td>Funded by NIH & Start-up Funds</td>
</tr>
</tbody>
</table>

Advisor: Saami K. Yazdani, PhD

Associate Professor

Wake Forest University
Department of Engineering
455 Vine Street | Winston-Salem, NC 27101
T: 336.702.1968
E: yazdanis@wfu.edu
WFU site: https://engineering.wfu.edu/people/faculty/saami-yazdani/
sky lab site: www.biofluids.org

Specific Project Description: Current strategies to prevent restenosis following endovascular treatment include the local delivery of anti-proliferative agents to inhibit vascular smooth muscle cell (VSMC) proliferation and migration. These agents, not specific to VSMC, are deposited on the luminal surface, and therefore, target endothelial cells and delay vascular healing. Cell-targeted therapies, (e.g. RNA aptamers), can potentially overcome these safety concerns by specifically binding to VSMC and inhibiting proliferation and migration. The purpose of our study is to therefore demonstrate the ability of a perfusion catheter to deliver cell-specific RNA aptamer inhibitors directly to the vessel wall. Our preliminary results demonstrate successful delivery of VSMC-specific RNA aptamers directly to the arterial medial layer via a novel perfusion catheter. We confirm that this novel approach inhibits neointimal growth in a clinically relevant pre-clinical model. Overall, this project will test the hypothesis that RNA aptamer delivered by a perfusion catheter directly into the medial layer will inhibit neointimal growth and accelerate re-endothelialization during the vascular healing process.

Other Notes: This research will be conducted at Wake Downtown.
Project Title
Image-guided delivery of brain tumor-targeted nano-drugs

Position Need
1 MS/PhD, start August 2021

Funding
Funded via NIH R01

Advisor
Dawen Zhao, MD, PhD
Associate Professor
Biomedical Engineering
Wells Fargo Faculty Scholar
WFU Campus
Medical Center Boulevard
Winston-Salem, NC 27157

- Phone: 336-713-5783
- Fax: 336-716-54921
- Email: dawzhao@wakehealth.edu

Specific Project Description
Malignant brain tumors are highly resistant to conventional multimodal therapies. Delivery of therapeutic agents to the brain tumor remains a major challenge partially due to the blood brain barrier (BBB). We have recently developed a brain tumor-targeted nanoplatform that enables the encapsulated imaging contrast agents and/or anti-cancer therapeutic agents to penetrate across the BBB. In the present project, building upon this nanoplatform, we propose to develop nanohybrids of MRI contrast agents, complexed with effective chemotherapeutic agents, aiming to achieve simultaneous cancer treatment and imaging. The delivery, release kinetics and biodistribution of the nano-drugs can be assessed spatially and temporally based on the activatable or switchable MRI contrast. Various rodent models of brain tumors established at the lab are available for the image-guided drug delivery project funded by NIH.

Other Notes
The graduate student will have the opportunity to work within a highly interactive team to conduct basic and translational research in the Department of Biomedical Engineering and Department of Cancer Biology of Wake Forest University School of Medicine.
2021 Faculty Advisor Request form for Graduate Student Position

Location: Wake Forest University

Project Title: In vivo MRI of the brain tumor microenvironment
Position Need: 1 MS/PHD, starting August 2021
Funding: Funded via WFUHS Faculty Scholar

Advisor: Dawen Zhao, MD, PhD
Associate Professor
Biomedical Engineering and Cancer Biology
Wells Fargo Faculty Scholar
Wake Forest School of Medicine
Medical Center Boulevard
Winston-Salem, NC 27157

Phone: 336-713-5783
Fax: 336-716-54921
Email: dawzhao@wakehealth.edu

Specific Project Description: Malignant brain tumors are characterized by profound angiogenesis and intratumoral hypoxia and necrosis, which have been shown to correlate negatively with clinical outcome. The major goal of this project is to integrate multiple parameters of tumor hypoxia and vasculature acquired by multimodal MRI/optical imaging. The imaging findings will be correlated with histological and biological studies of tumor cell aggressiveness, vascular perfusion and permeability and hypoxia. Various rodent models including glioma and brain metastasis established at the lab are available for the project.

Other Notes: The graduate student will have the opportunity to work within a highly interactive team to conduct basic and translational research in the Department of Biomedical Engineering and Department of Cancer Biology of Wake Forest University School of Medicine.